History of aviation From Wikipedia, the free encyclopedia

History of aviation

From Wikipedia, the free encyclopedia

Jump to navigationJump to search

The Wright Military Flyer aboard a wagon in 1908.

French reconnaissance balloon L’Intrépide of 1796, the oldest existing flying device, in the Heeresgeschichtliches Museum, Vienna.

Aviation timeline

The history of aviation extends for more than two thousand years, from the earliest forms of aviation such as kites and attempts at tower jumping to supersonic and hypersonic flight by powered, heavier-than-air jets.

Kite flying in China dates back to several hundred years BC and slowly spread around the world. It is thought to be the earliest example of man-made flight. Ibn Firnas built the first glider and attempted some flights. Leonardo da Vinci‘s 15th-century dream of flight found expression in several rational but unscientific designs, though he did not attempt to construct any of them.

The discovery of hydrogen gas in the 18th century led to the invention of the hydrogen balloon, at almost exactly the same time that the Montgolfier brothers rediscovered the hot-air balloon and began manned flights.[1] Various theories in mechanics by physicists during the same period of time, notably fluid dynamics and Newton’s laws of motion, led to the foundation of modern aerodynamics, most notably by Sir George Cayley. Balloons, both free-flying and tethered, began to be used for military purposes from the end of the 18th century, with the French government establishing Balloon Companies during the Revolution.[2]

Experiments with gliders provided the groundwork for heavier-than-air craft, and by the early-20th century, advances in engine technology and aerodynamics made controlled, powered flight possible for the first time. The modern aeroplane with its characteristic tail was established by 1909 and from then on the history of the aeroplane became tied to the development of more and more powerful engines.

The first great ships of the air were the rigid dirigible balloons pioneered by Ferdinand von Zeppelin, which soon became synonymous with airships and dominated long-distance flight until the 1930s, when large flying boats became popular. After World War II, the flying boats were in their turn replaced by land planes, and the new and immensely powerful jet engine revolutionised both air travel and military aviation.

In the latter part of the 20th century, the advent of digital electronics produced great advances in flight instrumentation and “fly-by-wire” systems. The 21st century saw the large-scale use of pilotless drones for military, civilian and leisure use. With digital controls, inherently unstable aircraft such as flying wings became possible.


The term aviation, noun of action from stem of Latin avis “bird” with suffix -ation meaning action or progress, was coined in 1863 by French pioneer Guillaume Joseph Gabriel de La Landelle (1812–1886) in “Aviation ou Navigation aérienne sans ballons”.[3][4]

Primitive beginnings[edit]

Tower jumping[edit]

Daedalus working on Icarus‘ wings.

Since antiquity, there have been stories of men strapping birdlike wings, stiffened cloaks or other devices to themselves and attempting to fly, typically by jumping off a tower. The Greek legend of Daedalus and Icarus is one of the earliest known; others originated from India, China and the European Middle Age. During this early period, the issues of lift, stability and control were not understood, and most attempts ended in serious injury or death.

The Andalusian scientist Abbas ibn Firnas (810–887 AD) is claimed to have made a jump in Cordoba, Spain, covering his body with vulture feathers and attaching two wings to his arms.[5][6] No other sources record the event.[5] Writing in the twelfth century, William of Malmesbury stated that the eleventh century Benedictine monk Eilmer of Malmesbury attached wings to his hands and feet and flew a short distance. Beyond those based on William’s account, there are no other known sources documenting Eilmer’s life.[5] According to John Harding, Ibn Firnas’ glider was the first attempt at heavier-than-air flight in aviation history.[7]

Many others made well-documented jumps in the following centuries. As late as 1811, Albrecht Berblinger constructed an ornithopter and jumped into the Danube at Ulm.[8]


Woodcut print of a kite from John Bate’s 1635 book The Mysteryes of Nature and Art.

The kite may have been the first form of man-made aircraft.[1] It was invented in China possibly as far back as the 5th century BC by Mozi (Mo Di) and Lu Ban (Gongshu Ban).[9] Later designs often emulated flying insects, birds, and other beasts, both real and mythical. Some were fitted with strings and whistles to make musical sounds while flying.[10][11][12] Ancient and medieval Chinese sources describe kites being used to measure distances, test the wind, lift men, signal, and communicate and send messages.[13]

Kites spread from China around the world. After its introduction into India, the kite further evolved into the fighter kite, where an abrasive line is used to cut down other kites.

Man-carrying kites[edit]

Man-carrying kites are believed to have been used extensively in ancient China, for both civil and military purposes and sometimes enforced as a punishment. An early recorded flight was that of the prisoner Yuan Huangtou, a Chinese prince, in the 6th century AD.[14] Stories of man-carrying kites also occur in Japan, following the introduction of the kite from China around the seventh century AD. It is said that at one time there was a Japanese law against man-carrying kites.[15]

Rotor wings[edit]

The use of a rotor for vertical flight has existed since 400 BC in the form of the bamboo-copter, an ancient Chinese toy.[16][17] The similar “moulinet à noix” (rotor on a nut) appeared in Europe in the 14th century AD.[18]

Hot air balloons[edit]

From ancient times the Chinese have understood that hot air rises and have applied the principle to a type of small hot air balloon called a sky lantern. A sky lantern consists of a paper balloon under or just inside which a small lamp is placed. Sky lanterns are traditionally launched for pleasure and during festivals. According to Joseph Needham, such lanterns were known in China from the 3rd century BC. Their military use is attributed to the general Zhuge Liang (180–234 AD, honorific title Kongming), who is said to have used them to scare the enemy troops.[19]

There is evidence that the Chinese also “solved the problem of aerial navigation” using balloons, hundreds of years before the 18th century.[20]


One of Leonardo’s sketches

Eventually, after Ibn Firnas‘s construction, some investigators began to discover and define some of the basics of rational aircraft design. Most notable of these was Leonardo da Vinci, although his work remained unknown until 1797, and so had no influence on developments over the next three hundred years. While his designs are rational, they are not scientific,[21] and particularly underestimate the amount of power that would be needed.[22]

Leonardo studied bird and bat flight,[22] claiming the superiority of the latter owing to its unperforated wing.[23] He analyzed these and anticipating many principles of aerodynamics. He understood that “An object offers as much resistance to the air as the air does to the object.”[24] Isaac Newton would not publish his third law of motion until 1687.

From the last years of the 15th century until 1505,[22] Leonardo wrote about and sketched many designs for flying machines and mechanisms, including ornithopters, fixed-wing gliders, rotorcraft (perhaps inspired by whirligig toys), parachutes (in the form of a wooden-framed pyramidal tent) and a wind speed gauge.[22] His early designs were man-powered and included ornithopters and rotorcraft; however he came to realise the impracticality of this and later turned to controlled gliding flight, also sketching some designs powered by a spring.[25]

According to one commonly repeated, albeit certainly fictional story, in 1505 Leonardo or one of his pupils attempted to fly from the summit of Monte Ceceri.[22]

Lighter than air[edit]

Beginnings of modern theories[edit]

In 1670, Francesco Lana de Terzi published a work that suggested lighter than air flight would be possible by using copper foil spheres that, containing a vacuum, would be lighter than the displaced air to lift an airship. While theoretically sound, his design was not feasible: the pressure of the surrounding air would crush the spheres. The idea of using a vacuum to produce lift is now known as vacuum airship but remains unfeasible with any current materials.

In 1709, Bartolomeu de Gusmão presented a petition to King John V of Portugal, begging for support for his invention of an airship, in which he expressed the greatest confidence. The public test of the machine, which was set for 24 June 1709, did not take place. According to contemporary reports, however, Gusmão appears to have made several less ambitious experiments with this machine, descending from eminences. It is certain that Gusmão was working on this principle at the public exhibition he gave before the Court on 8 August 1709, in the hall of the Casa da Índia in Lisbon, when he propelled a ball to the roof by combustion.[clarification needed]


Lithographic depiction of pioneering events (1783 to 1846).

1783 was a watershed year for ballooning and aviation. Between 4 June and 1 December, five aviation firsts were achieved in France:

  • On 4 June, the Montgolfier brothers demonstrated their unmanned hot air balloon at Annonay, France.
  • On 27 August, Jacques Charles and the Robert brothers (Les Freres Robert) launched the world’s first unmanned hydrogen-filled balloon, from the Champ de Mars, Paris.
  • On 19 October, the Montgolfiers launched the first manned flight, a tethered balloon with humans on board, at the Folie Titon in Paris. The aviators were the scientist Jean-François Pilâtre de Rozier, the manufacture manager Jean-Baptiste Réveillon, and Giroud de Villette.
  • On 21 November, the Montgolfiers launched the first free flight with human passengers. King Louis XVI had originally decreed that condemned criminals would be the first pilots, but Jean-François Pilâtre de Rozier, along with the Marquis François d’Arlandes, successfully petitioned for the honor. They drifted 8 km (5.0 mi) in a balloon-powered by a wood fire.
  • On 1 December, Jacques Charles and the Nicolas-Louis Robert launched their manned hydrogen balloon from the Jardin des Tuileries in Paris, as a crowd of 400,000 witnessed. They ascended to a height of about 1,800 feet (550 m)[15] and landed at sunset in Nesles-la-Vallée after a flight of 2 hours and 5 minutes, covering 36 km. After Robert alighted Charles decided to ascend alone. This time he ascended rapidly to an altitude of about 9,800 feet (3,000 m), where he saw the sun again, suffered extreme pain in his ears, and never flew again.

Ballooning became a major “rage” in Europe in the late 18th century, providing the first detailed understanding of the relationship between altitude and the atmosphere.

Non-steerable balloons were employed during the American Civil War by the Union Army Balloon Corps. The young Ferdinand von Zeppelin first flew as a balloon passenger with the Union Army of the Potomac in 1863.

In the early 1900s, ballooning was a popular sport in Britain. These privately owned balloons usually used coal gas as the lifting gas. This has half the lifting power of hydrogen so the balloons had to be larger, however, coal gas was far more readily available and the local gas works sometimes provided a special lightweight formula for ballooning events.[26]


Santos-Dumont’s “Number 6” rounding the Eiffel Tower in the process of winning the Deutsch de la Meurthe Prize, October 1901.

Airships were originally called “dirigible balloons” and are still sometimes called dirigibles today.

Work on developing a steerable (or dirigible) balloon continued sporadically throughout the 19th century. The first powered, controlled, sustained lighter-than-air flight is believed to have taken place in 1852 when Henri Giffard flew 15 miles (24 km) in France, with a steam engine driven craft.

Another advance was made in 1884, when the first fully controllable free-flight was made in a French Army electric-powered airship, La France, by Charles Renard and Arthur Krebs. The 170-foot (52 m) long, 66,000-cubic-foot (1,900 m3) airship covered 8 km (5.0 mi) in 23 minutes with the aid of an 8½ horsepower electric motor.

However, these aircraft were generally short-lived and extremely frail. Routine, controlled flights would not occur until the advent of the internal combustion engine (see below.)

The first aircraft to make routine controlled flights were non-rigid airships (sometimes called “blimps”.) The most successful early pioneering pilot of this type of aircraft was the Brazilian Alberto Santos-Dumont who effectively combined a balloon with an internal combustion engine. On 19 October 1901, he flew his airship Number 6 over Paris from the Parc de Saint Cloud around the Eiffel Tower and back in under 30 minutes to win the Deutsch de la Meurthe prize. Santos-Dumont went on to design and build several aircraft. The subsequent controversy surrounding his and others’ competing claims with regard to aircraft overshadowed his great contribution to the development of airships.

At the same time that non-rigid airships were starting to have some success, the first successful rigid airships were also being developed. These would be far more capable than fixed-wing aircraft in terms of pure cargo carrying capacity for decades. Rigid airship design and advancement was pioneered by the German count Ferdinand von Zeppelin.

Construction of the first Zeppelin airship began in 1899 in a floating assembly hall on Lake Constance in the Bay of Manzell, Friedrichshafen. This was intended to ease the starting procedure, as the hall could easily be aligned with the wind. The prototype airship LZ 1 (LZ for “Luftschiff Zeppelin”) had a length of 128 m (420 ft) was driven by two 10.6 kW (14.2 hp) Daimler engines and balanced by moving a weight between its two nacelles.

Its first flight, on 2 July 1900, lasted for only 18 minutes, as LZ 1 was forced to land on the lake after the winding mechanism for the balancing weight had broken. Upon repair, the technology proved its potential in subsequent flights, bettering the 6 m/s speed attained by the French airship La France by 3 m/s, but could not yet convince possible investors. It would be several years before the Count was able to raise enough funds for another try.

Although airships were used in both World War I and II, and continue on a limited basis to this day, their development has been largely overshadowed by heavier-than-air craft.

Heavier than air[edit]

17th and 18th centuries[edit]

Italian inventor Tito Livio Burattini, invited by the Polish King Władysław IV to his court in Warsaw, built a model aircraft with four fixed glider wings in 1647.[27] Described as “four pairs of wings attached to an elaborate ‘dragon'”, it was said to have successfully lifted a cat in 1648 but not Burattini himself.[28] He promised that “only the most minor injuries” would result from landing the craft.[29] His “Dragon Volant” is considered “the most elaborate and sophisticated aeroplane to be built before the 19th Century”.[30]

The first published paper on aviation was “Sketch of a Machine for Flying in the Air” by Emanuel Swedenborg published in 1716. This flying machine consisted of a light frame covered with strong canvas and provided with two large oars or wings moving on a horizontal axis, arranged so that the upstroke met with no resistance while the downstroke provided lifting power. Swedenborg knew that the machine would not fly, but suggested it as a start and was confident that the problem would be solved. He wrote: “It seems easier to talk of such a machine than to put it into actuality, for it requires greater force and less weight than exists in a human body. The science of mechanics might perhaps suggest a means, namely, a strong spiral spring. If these advantages and requisites are observed, perhaps in time to come someone might know how better to utilize our sketch and cause some addition to be made so as to accomplish that which we can only suggest. Yet there are sufficient proofs and examples from nature that such flights can take place without danger, although when the first trials are made you may have to pay for the experience, and not mind an arm or leg”. Swedenborg would prove prescient in his observation that a method of powering of an aircraft was one of the critical problems to be overcome.

On 16 May 1793, the Spanish inventor Diego Marín Aguilera managed to cross the river Arandilla in Coruña del CondeCastile, flying 300 – 400 m, with a flying machine.[31]

19th century[edit]

Balloon jumping replaced tower jumping, also demonstrating with typically fatal results that man-power and flapping wings were useless in achieving flight. At the same time scientific study of heavier-than-air flight began in earnest. In 1801, the French officer André Guillaume Resnier de Goué managed a 300-metre glide by starting from the top of the city walls of Angoulême and broke only one leg on arrival.[32] In 1837 French mathematician and brigadier general Isidore Didion stated, “Aviation will be successful only if one finds an engine whose ratio with the weight of the device to be supported will be larger than current steam machines or the strength developed by humans or most of the animals”.[33]

Sir George Cayley and the first modern aircraft[edit]

Sir George Cayley was first called the “father of the aeroplane” in 1846.[34] During the last years of the previous century he had begun the first rigorous study of the physics of flight and would later design the first modern heavier-than-air craft. Among his many achievements, his most important contributions to aeronautics include:

  • Clarifying our ideas and laying down the principles of heavier-than-air flight.
  • Reaching a scientific understanding of the principles of bird flight.
  • Conducting scientific aerodynamic experiments demonstrating drag

Facebooktwitterredditpinterestlinkedintumblrmailby feather